Facilitator Instructions
Recommended Materials

The following materials are required to complete this challenge. The quantity will depend on the number of students participating. Alternatives and additional materials can be used if desired, but be mindful of safety when allowing students to bring in or handle materials that could potentially be dangerous.

Each team will require the following items:

- Digital scale or balance
- Stopwatch
- Measuring tape
- Ruler
- Thin string (e.g., embroidery thread, twine, or yarn)
- Small sealable plastic storage bag to hold payload inside capsule
- Washers, marbles, or pennies to serve as mass
- Hole reinforcements or stickers with holes
- Each team should have a copy of the cargo bay template provided in this guide. It can be copied on any weight of paper, but all copies need to be the same paper weight.

Examples of additional materials that may be used:

- Aluminum foil
- Balloons
- Binder clips
- Bubble wrap
- Cardboard or cardstock
- Clothespins
- Cloth
- Coffee filters
- Cotton balls
- Craft sticks or tongue depressors
- Glue sticks
- Mini aluminum foil pie plates
- Modeling clay
- Paper bags
- Paper clips
- Paper towel or toilet paper tubes (empty)
- Pennies
- Plastic eggs
- Plastic wrap
- Rubber bands
- Skewers or stirrers
- Staplers and staples
- Straws
- String
- Tape (masking, electrical, transparent, duct)
Safety

Safety, an important issue for all curricular areas of education, is of special concern for STEM-based activities and courses. Many national and state academic standards address the need for schools and subject areas to promote development of student knowledge and abilities in a safe learning environment.

School administrators, teachers, and facilitators are responsible for providing a learning environment that is safe, suitable, and supportive. Facilitators are also responsible for their students' welfare in the classroom and laboratory.

Facilitators should

• Approve all drawings before students start building their designs.
• Look for flimsy structure designs and potentially hazardous combinations of materials.
• Ensure that resources are clean and dry, with no sharp edges exposed.
• Make sure all materials are undamaged and in good repair.
• Prohibit students from bringing in or using additional materials for their designs without prior approval.

Students should

• Make safety a priority during all activities.
• Wear safety goggles when conducting all investigations and the challenge.
• Demonstrate courtesy and respect for ideas expressed by others in the group.
• Use tools and equipment in a safe manner.
• Assume responsibility for their own safety and the safety of others.
Team Building

Begin by dividing students into teams of no more than four to give all students an opportunity to contribute. By working as members of a team, students develop skills such as trust, cooperation, and decision making. Working as a team member, however, can be challenging for some students. The following exercises are recommended to help teams begin to work together effectively.

Establish a team name. Many NASA teams are named based on the work they do.

Design a mission patch. Teams that work on NASA missions and spacecraft are unified under a mission patch designed with symbols and artwork to identify the group’s mission.

Create a vision statement. This is a short inspirational sentence or phrase that describes the core goal of the team’s work. NASA’s current vision statement is “To discover and expand knowledge for the benefit of humanity.”

As students begin to work together, their individual strengths will become apparent. Students can volunteer or be assigned tasks or responsibilities that are vital to completing the challenge. Team jobs can also be rotated throughout the team members to give all students an opportunity to improve their team skills. The following list includes examples of jobs that student teams will need to complete. Feel free to come up with others, and remember that all team members should serve as builders and engineers for the team.

Design engineer. Sketches, outlines, patterns, or plans the ideas the team generates

Technical engineer. Assembles, maintains, repairs, and modifies the structural components of the design

Operations engineer. Sets up and operates the prototype to complete a test

Technical writer/videographer. Records and organizes data and prepares documentation (text, pictures, and/or video) to be reported and published
NASA Mission Background

Mars

Mars is the fourth planet from the Sun and is approximately 228 million km away from it. Mars is the next planet beyond Earth and is about one-half the size of Earth. Known as the “Red Planet,” Mars gets its red color from the iron in its soil.

Mars is very cold and has an average temperature of –62 °C (–79.6 °F), far below the freezing point of water. Its rocky and dusty red surface is covered with canyons, inactive volcanoes, and craters. Although the Martian atmosphere is considerably different than Earth’s, Mars does have clouds, wind, and dust.

The characteristics of Mars and Earth are very different. The gravitational pull on Mars is less than the gravity on Earth, meaning that a rock dropped on Mars would fall more slowly than a rock dropped on Earth. A person who weighs 45 kg (about 100 lb) on Earth would weigh only about 17 kg (37 lb) on Mars because of the reduced gravity. The atmosphere of Mars is about 100 times thinner than Earth’s. The Martian atmosphere has much less oxygen and far more carbon dioxide than the Earth’s atmosphere. It is very difficult for NASA to land spacecraft on the surface of Mars because there are fewer molecules of air for the parachute to “catch.”

How is NASA exploring Mars today?

The spacecraft orbiting Mars today use tools to collect scientific information, such as the temperature and the kinds of minerals on Mars. These spacecraft take images and search for water.

NASA has also landed rovers named Sojourner, Spirit, Opportunity, and Curiosity on the surface of Mars. These rovers are robots that move around taking images, conducting scientific experiments, and collecting data about the planet’s soil and rocks.

NASA uses the images and information gathered by the orbiting spacecraft and the rovers on the planet’s surface to help determine if life could ever have existed on Mars. Opportunity and Curiosity are still providing images and data to NASA.
How will NASA explore Mars in the future?

NASA is working to send astronauts to the Red Planet. To accommodate heavier loads needed for longer missions, NASA continues to develop drag devices to safely land the spacecraft on the Martian surface. NASA plans to send more robots to Mars to collect Martian soil and rocks and return them to Earth to be studied.

How do spacecraft land on the Martian surface?

Devices that slow down moving objects by creating drag come in many shapes, sizes, and materials. NASA has used a basic parachute design as a drag device to land vehicles on the surface of Mars since 1976, when the first Viking lander touched down.

To conduct advanced exploration missions and safely land heavier spacecraft on Mars in the future, NASA must improve the technology of decelerating (slowing down) large payloads traveling at supersonic speeds. NASA is developing new large, sturdy, and lightweight systems to deliver next-generation rovers and landers on Mars. These new technologies will be able to slow down larger, heavier landers from supersonic speeds to the slower speeds that are necessary for a safe landing on Mars.

Figure 11. Artist’s concept of the parachute system for the Mars Science Laboratory’s Curiosity rover. (NASA)
Engagement: Accessing Existing Knowledge

Prior to starting the engineering design challenge, it will be useful to identify students’ existing knowledge and level of understanding using a series of guided questions related to this specific challenge. This discussion will allow facilitators to tailor the challenge and the Supporting Science Investigations to the group, maximizing the educational benefit.

The following questions provide a starting point from which additional topics may be discussed.

- How is Mars different from Earth?
- Could we live on Mars today? Why or why not?
- What is a parachute?
- Where have you seen parachutes in use?
- What is drag?
- Can you name some things that create drag?

STEM Vocabulary

Engineering design challenges and the engineering design process (EDP) are concepts that may be unfamiliar to your students. Younger students in particular may not have heard words like “criteria” or “constraints,” which are commonly associated with engineering design.

A list of related STEM vocabulary words is included in this guide. If practical or appropriate, a vocabulary wall can be created to assist in familiarizing students with these words.

Student Team Challenge Journal

Before moving on to the Supporting Science Investigations, provide students with the Student Team Challenge Journal. Additional sheets should be made available as students work through the challenge. Where possible, engage students by relating the information to their everyday lives.
Exploration: Supporting Science Investigations

The following pages contain two Supporting Science Investigations to help with students' understanding of the background material. Ideally, students will perform both of the Supporting Science Investigations, but facilitators should ensure that at least one of these investigations is completed prior to commencing the engineering design challenge. These investigations will explore the primary concepts used during the challenge.

This section includes the following Supporting Science Investigations and their respective concepts:

- **Investigation 1: It’s a Drag**
 - Drag is a force.
 - Drag is created as an object interacts with the air.
 - The amount of drag created is directly proportional to the object’s surface area.

- **Investigation 2: Touchdown**
 - Drag is a force.
 - Drag negatively affects acceleration.
Supporting Science Investigation 1: It’s a Drag

Concept

Every object that falls due to gravity will ultimately fall at a constant speed. In order to stop an object or to slow it down, a certain amount of drag needs to be applied to oppose the acceleration. As drag increases, an object will slow its rate of fall.

In this activity, students will see the effects of drag on a falling object by shaping a large sheet of paper and measuring the time it takes to fall from a fixed distance.

Materials

For each pair of students:

- Meter stick
- Large sheet of paper
- Stopwatch
- Table

Procedure

1. Divide the class into pairs. Students will take turns dropping and timing the falling object.
2. Students place the meter stick on top of the table so that it stands upright. The meter stick should be placed at the edge of the table. The top of the stick (approx. 2 m above the floor) will be the designated drop point for each iteration of the test.
3. One student in each group folds the paper in half and holds the sheet of paper horizontally at the top of the meter stick.
4. The student releases the paper while the other team member times how long it takes to fall to the floor.
5. Students record the time on their Data Collection Sheets.
6. Students repeat this drop two more times for a total of three iterations, recording the time for each drop on their Data Collection Sheets.
7. Students calculate the average of the three drops and record it on their Data Collection Sheets.
8. Students fold the sheet of paper into quarters, once in each direction.

Figure 12. Space Shuttle Endeavour's drag chute deploys to slow the orbiter as it lands at Edwards Air Force Base at the conclusion of the STS–111 mission to the International Space Station in 2002. (NASA)
Parachuting Onto Mars

9. Students drop the paper three times using the method described in steps 3 and 4, recording all of the times and the average on their Data Collection Sheets. Remind students to switch dropper and timer roles so each gets a chance to time.

10. Instruct students to repeat this experiment multiple times with various reshaping of the paper. There is no constraint as to how the paper is folded or unfolded. Tell students their goal is to discover the shape that causes the most drag and therefore the slowest fall time.

11. Have students answer the questions on their Data Collection Sheets.

Options for Differentiating Instruction

The following suggestions may be used when modifying this investigation for students outside of the designated age range or ability levels.

Modification

- Consider prescribed folds for the investigation.

Enrichment

- Consider allowing students to use different weights of paper.
Supporting Science Investigation 2: Touchdown

Concept

The Mars 2020 rover mission is part of NASA’s Mars Exploration Program. The mission is not only seeking signs of habitable conditions on Mars but is also searching for signs of past microbial life. The mission will gather information to aid future human expeditions to Mars. This includes improving landing techniques; identifying resources to enable human habitation; and characterizing weather, dust, and other environmental conditions that could affect how future astronauts live and work on Mars.

NASA will use the proven landing system used to land the Curiosity rover. However, with heavier science equipment, the spacecraft will need to have a way to absorb the extra energy of impact from the landing while also protecting the cargo.

Each team will design and build a vehicle imitating the Mars 2020 rover landing vehicle. Teams will develop a shock-absorbing system that will keep marshmallows (cargo) inside a cup (cargo hold) upon landing during a drop test. Teams will not be allowed to secure the cargo with tape. The challenge is to make a shock-absorbing system that absorbs the transfer of energy so the marshmallows stay in the cup on landing. Teams can only use the materials they are given.

Materials

For each pair of students:

- Piece of stiff paper or cardboard, approximately 10 x 13 cm (4 x 5 in.)
- Small paper or plastic cup
- 4 small index cards
- Tape measure
- 2 regular-size marshmallows
- 10 miniature marshmallows
- 3 rubber bands
- 8 plastic straws
- Scissors
- Tape

Figure 14. Materials used in the “Touchdown” investigation.
Parachuting Onto Mars

Procedure

1. Secure the cargo hold (cup) on the lander (cardboard). Students draw a circle around the bottom of the cup. They can either leave the cup in place during the design and build, or they can remove it to assist in the construction of the shock-absorbing system. In either case, the cargo hold must be secured prior to testing.

2. Students work in pairs to design a shock-absorbing system with the materials provided.

3. Students build their designed shock-absorbing system and attach it to the cardboard lander.

4. With the cargo hold secured to the lander, put two pieces of cargo (the large marshmallows) in the cargo hold.

5. Students drop the lander from heights of 50 cm, 100 cm, and 150 cm.

6. If the cargo does not stay in the cup, students redesign the shock-absorbing system as time allows.

Notes

- If a lander tips over as it falls through the air, make sure it is level when released. Check that the cup is centered on the cardboard. Check that the weight is evenly distributed.

- If the cargo bounces out of the cup during testing, add soft pads or change the number or position of the shock absorbers.

Options for Differentiating Instruction

The following suggestions may be used when modifying this investigation for students outside of the designated age range or ability levels.

Modification

- Consider giving students a picture of one of the current Mars rovers and suggest they model their design after it.

Enrichment

- Consider increasing the mass of the cargo by adding pennies or other small objects, such as washers.
Explanations: Supporting Science Investigations Discussion

The following investigation discussions are designed to reinforce students’ understanding of the specific concepts learned during the Supporting Science Investigations.

Each discussion is based on the standard Think–Pair–Share strategy, which encourages individual participation, collaborative learning, and higher-level thinking. This strategy consists of three parts:

- **Think**: Students think independently about the question that has been posed.
- **Pair**: Students are paired to discuss their thoughts.
- **Share**: Students share their ideas with the whole class.

Focus on one question at a time. When students are done sharing their thoughts and ideas on the first question, move to the second question and repeat the process.

Procedure

1. Discussion Questions for each Supporting Science Investigation are included in this guide.
2. Ask one of the Discussion Questions to begin the Think–Pair–Share process.
3. Provide approximately 5 minutes for students to think independently.
4. Next, provide approximately 5 minutes for the students to share in pairs.
5. Finally, have students share their ideas in a class discussion.
Investigation Discussion 1: It’s a Drag

Concepts Learned
The following scientific concepts should have been realized by performing this investigation:

- Drag is a force.
- Drag is created as an object interacts with the air.
- The amount of drag created is directly proportional to the object’s surface area.

Discussion Questions

It’s a Drag used falling paper to simulate the effects of drag on a moving object.

If we were to perform the same activity on Mars

1. Would the results be the same, faster, or slower than here on Earth? Why?
2. If the goal was to produce as much drag as possible, how could you achieve this?
3. How will you apply what you learned in this investigation to your design?
Investigation Discussion 2: Touchdown

Concepts Learned

The following scientific concepts should have been realized by performing this investigation:

- A falling object has energy.
- A falling object hitting the ground transfers that energy to the ground.
- Materials can absorb energy on impact.

Discussion Questions

The Touchdown activity showed that an object gains energy (speed) as it falls due to gravity pulling downward on the object. To prevent the cargo from being damaged as it landed, it had to be protected using energy-absorbing materials.

1. If this experiment were performed on Mars, would the outcome be different?
2. Which of the available materials performed best in this challenge? Would this material work in space? Why or why not?
3. Guide students to help them make the connection between this investigation and the engineering design challenge.
Elaboration: The Engineering Design Challenge

Using the Engineering Design Process

Discuss the engineering design process (EDP) with students and explain how students will use this process to work through the engineering design challenge. The following pages explain how each step of the EDP relates to the challenge and how to facilitate the process. Regardless of the step being undertaken by each team, it is important that they work in a scientific manner. Explain the EDP sheets and how to use the appropriate pages for recording group ideas. It is important for students to understand that they may choose any path through the EDP, but they should be able to communicate why they selected a particular path.

Discuss with your students the information covered within the engineering design challenge. Using the background information, talk about current NASA missions and how those relate to this challenge. As a class, discuss the individual components of this challenge. Explain the specific criteria and check with students for understanding. Discuss with students what the constraints mean, how and why they are important, and how they relate to their everyday experiences.

Consider using a budget sheet with students as an optional real-world component. Suggestions include the following:

- Provide students with a price sheet that lists the cost of the items they have used to complete the challenge.
- Have teams use the Budget Reporting Data Sheet included here to determine the cost of their solution as tested.
- For enrichment, advise students that NASA plans to mass-produce their design for use as a delivery vehicle for monthly supply trips to Mars, but due to financial constraints, the annual budget has been reduced. Students will be required to redesign their prototype to reduce costs, but without reducing performance.
Identify a Need or Problem. Identify a need or problem to be solved, improved, or fixed. Identify the criteria and constraints that will need to be met to solve the problem.

Research. Use resources from the internet, the library, or discussions with NASA scientists and engineers to learn more about the need or problem and possible solutions. Investigate how this problem is currently being solved or what efforts scientists and engineers are making to find a solution.

Design. Use all information gathered to create the design(s). Design includes modeling possible solutions, refining models, and choosing the model(s) that best meets the original need or problem.

Prototype. Construct a prototype, or physical model, based on the design model(s). Prototypes are used to test proposed solutions.

Test and Evaluate. Test prototype to determine how effectively it solves the need or problem. Collect data to use as evidence of success or need for improvement. Redesign and refine prototypes to continue looking for possible solutions.

Communicate, Explain, and Share. Communicating, explaining, and sharing the solution and design is essential to tell others how it works, how it solves (or does not solve) the identified need or problem, and how it meets (or fails to meet) the criteria and constraints. Determining how to communicate and act on constructive criticism is critical.
The Engineering Design Challenge

The Challenge

Because spacecraft that land on the surface of Mars travel at extremely high speeds, they need some sort of drag device to slow them down to prevent them from crashing into the planet and becoming damaged. As missions increase in complexity, landers and rovers become heavier and require even more effective drag devices. Engineers must work within the limits (or constraints) of mass, weight, and space on a rocket to successfully accomplish the mission. Students will work in teams to design and construct a drag device that will slow down the cargo bay when it is dropped from a consistent height.

Criteria and Constraints

1. The drag device must connect to a team-built cargo bay that is assembled using the template provided in this guide.
2. The entire device must be deployed from 2 m and remain intact throughout the drop.
3. The cargo bay must hold 10 g.
4. The overall mass cannot exceed 50 g.

Options for Differentiating Instruction

The following suggestions may be used when modifying the engineering design challenge for students outside of the designated age range or ability level.

Modification

- Consider assembling the cargo bay for students.

Enrichment

- After students have mastered the drag device with a 10-g payload, increase that weight to 15 g and then 20 g to test the device with more mass.
Student Team Challenge Journals

Students will be creating their Student Team Challenge Journals as they move through the engineering design process (EDP) to solve the challenge. Take time prior to starting the challenge to explain the best way for students to document their work and what the goals are for completing the challenge. The pages should document how student teams moved through the EDP. Students should be instructed to use as many sheets as needed to document each step of the process.

1. Always fill in the page number. This will help keep the pages in order.

2. Direct students to collaborate within their teams and use the five questions on the Communicate, Explain, and Share page to think about where they are in the process before they move on to the next step. Allow for extra copies of this section if needed. Here is an example: “We are moving back to the design phase because the prototype failed to meet the criteria. It was 50 g over the limit.”

3. When documenting the prototype stage, remind students to make note of any challenges they faced in building the design and how those challenges were resolved.

As students proceed through the process, they should record steps accomplished on the Team Progress Chart, found at the back of the Student Team Challenge Journal. Think of this chart as a Table of Contents for the journals that are being created as students move through the process.

In order to successfully complete the engineering design challenge, teams must use the EDP. As they work the steps of the EDP, students will be engaging in authentic engineering practices.
Identify a Need or Problem

Students complete the Identify a Need or Problem page from the Student Team Challenge Journal.

Engineering design begins by identifying a need or problem that an attempt can be made to solve, improve, and/or fix. This typically includes articulation of criteria and constraints that will define a successful solution.

Guiding Questions

Use the following guiding questions as discussion prompts to focus student understanding.

- How can our team design a _____ that will _____?
- What needs to be solved or improved?
- What are we trying to accomplish?

Instructional Procedure

1. Review the engineering design process with students.
2. Show the NASA Beginning Engineering Science and Technology (BEST) video titled "Repeatability," found at https://www.youtube.com/watch?v=-2Az1KDn-YM.
3. Ask students to identify the specific criteria and constraints of the design challenge.
4. Have students fill out the Identify a Need or Problem page in the Student Team Challenge Journal.

Differentiation Suggestions

Modifications

- Allow students extra time to discuss the challenge itself, the problem that needs to be solved, and how the problem could be solved.
- Introduce criteria and constraints one at a time. Allow student designs to meet one challenge requirement successfully before introducing additional requirements.

Enrichment

- Require students to write a letter or an email to a friend as if they were explaining their first job as a newly hired NASA engineer.
Research

Students complete the Research page from the Student Team Challenge Journal.

Research is done to learn more about the identified need or problem and potential solution strategies. Students can use resources from the internet, the library, or discussion with experts to examine how this problem or similar problems are currently being solved.

Guiding Questions

Use the following guiding questions as discussion prompts to focus student understanding.

- Where can you find more information about the topic?
- What questions would you ask an expert or an engineer who is currently working on this problem?
- Who in our society will benefit from this problem being solved?

Instructional Procedure

1. Help students answer any questions they have about the challenge. Use the internet or a school library to research answers.
2. Write down any unanswered questions and save them to ask the NASA subject matter expert (SME) during live connections.
3. Have team members fill out the Research page in the Student Team Challenge Journal.

Differentiation Suggestions

Modifications

- Provide a list of reputable online resources students can use.
- Arrange a visit to a library.
- Pair up students to complete their research together.

Enrichment

- Have students provide a properly formatted citation for one or more resources.
Design

Students complete the Design pages from the Student Team Challenge Journal. The design stage includes modeling possible solutions, refining the models, and choosing the model that best meets the original need or problem.

Guiding Questions

Use the following guiding questions as discussion prompts to focus student understanding.

- What are all the different ways each member of the team can imagine to solve the problem?
- What do we need to add to the design?
- What could go wrong if we add to the design?
- Do the drawings address all the criteria and constraints?

Instructional Procedure

1. Ask each team member to brainstorm individually and make sketches representing ideas for a solution. Students must clearly label and identify each part of their drawing.
2. Each team member should make sure that designs meet all constraints and criteria.
3. Have students sketch their ideas on the Design page in the Student Team Challenge Journal.
4. Ask team members to discuss their ideas and drawings with the rest of the team.
5. Have students record the strengths of each of the designs.
6. Have students fill out the Best Possible Solution page in the Student Team Challenge Journal.

Differentiation Suggestions

Modifications

- Encourage students to create a series of storyboards rather than a single complete drawing.
- Show students the building materials to help them visualize their sketch prior to beginning the drawing.

Enrichment

- Require students to specify measurements.
Analyzing the Designs

Team members analyze each member’s final drawing using the table provided in the Student Team Challenge Journal.

Based on a team discussion, team members will determine which design elements will be used to solve the problem and what features will be included to create the team’s prototype. The most promising solution should include elements from more than one design.

Guiding Questions

Use the following guiding questions as discussion prompts to focus student understanding.

- What is one strength of each student’s individual design?
- How can that be incorporated into a group design?
- Are the strengths in each design related to the criteria and constraints of the challenge?
- Are elements from each team member’s design represented in the final design?

Differentiation Suggestions

Modification

- Have students pick one aspect or characteristic at a time from each team member’s drawing to discuss in the group.

Enrichment

- Require students to draw one or more parts of the design to scale.
Prototype

Students complete the Prototype page from the Student Team Challenge Journal.

A prototype is constructed based on the design model and used to test the proposed solution. A final design should be drawn precisely and labeled with a key. Facilitators should approve final drawings before building begins. Facilitators are expected to assist students as necessary to ensure classroom safety.

Guiding Questions

Use the following guiding questions as discussion prompts to focus student understanding.

- What resources does your team need to gather?
- What is the plan?
- Who is doing what?

Instructional Procedure

1. Ask each team to identify the design that appears to solve the problem.
2. A final diagram of the design should be drawn precisely and labeled with a key.
3. Have each team determine what materials they will need to build their design and assign responsibilities to team members for prototype completion.
4. Be sure to approve the final drawings before building begins.
5. After teams receive their materials to build their prototype, have them complete a budget sheet showing their building material costs.
6. Have teams construct their prototypes using their drawings.
7. Have teams fill out the Prototype page in the Student Team Challenge Journal.

Differentiation Suggestions

Modification

- Give students extra time to explore various materials prior to building the model.

Enrichment

- Limit materials to add complexity (e.g., only 1 m of duct tape).
Test and Evaluate

Students complete the Test and Evaluate pages from the Student Team Challenge Journal.

Student teams should test their prototypes to determine how effectively they addressed the need or problem and collect data to serve as evidence of their success or need for improvement. Remind students that they must test their prototypes a minimum of three times for each iteration to ensure the validity of their results.

Guiding Questions

Use the following guiding questions as discussion prompts to focus student understanding.

- Did the team collect enough data to analyze the design?
- How did the prototype perform when tested?
- Did the design meet or exceed the criteria and constraints?

Instructional Procedure

1. Visit each team and test their designs to ensure they meet all challenge criteria and constraints.
2. Have teams fill out Test and Evaluate pages in the Student Team Challenge Journal.

Differentiation Suggestions

Modification

- Encourage students to test only one criteria or constraint at a time rather than all of them at once.

Enrichment

- Create a scatter plot of test results.
Communicate, Explain, and Share

Students complete the Communicate, Explain, and Share pages from the Student Team Challenge Journal.

Throughout the process, students will take time to reflect on their progress and consider what steps should be taken next. For this challenge, students will share with their peers, both one-on-one and as a classroom. Oral and written peer feedback will help students improve their solutions and designs. It is important for students to learn the peer-review process and to be accepting of others’ suggestions.

Students will complete the Communicate, Explain, and Share pages after each step to maintain direction and focus during the engineering design process (EDP). Communicating, explaining, and sharing the solution and design is essential to conveying how it works, how it solves the identified need or problem, and how it meets the criteria and constraints. Using the Student Presentation Organizer will help students create the presentation that will be submitted when the challenge has been completed.

Guiding Questions

Use the following guiding questions as discussion prompts to focus student understanding.

- What did or did not work in the latest iteration of the design? Why or why not?
- What are the pros and cons of this solution?
- Did each team show that they used all of the processes of the EDP?

Instructional Procedure

1. Ask team members to document and report the results of their designs.
2. Have students identify what changes were made with each iteration of the design and what the team believed caused the design to succeed or fail.
3. Students should complete the corresponding sheets in the Student Team Challenge Journal to help them think about how they completed each step of the EDP.

4. Students should use the Team Progress Chart to document progress as they work on their solutions.

5. Teams should use the Student Presentation Organizer to guide them through the creation of the team video or slide presentation.

Differentiation Suggestions

Modification

- Provide a few basic yes/no questions for students to answer to determine whether their design was successful or not.

Enrichment

- Have student teams use a variety of media to create their presentations.
Evaluation: Student Debriefing Questions

The following questions are designed to help start a discussion with your students. After the design challenge is complete, have teams work together to answer these questions.

1. Why did your team use this approach to solve the problem?

2. How did your research help you decide that this was the best solution?

 Encourage students to talk about their thought processes. How did they make their decisions? Was their approach logical and well reasoned? Do they understand the goals?

3. What changes did you make to your design during your iterations of redesign?

4. How could you further improve on your design?

 Questions 3 and 4 will confirm that students have correctly identified the flaws in their designs and are working to correct them.

5. What were the greatest challenges for your team throughout this process?

 Emphasize to students that even the most successful engineers have setbacks.

6. What strategies did your team use that proved effective in overcoming challenges?

 Have students elaborate on why they chose certain options or strategies. Did collaborative discussion or debate help them generate more or better ideas?

7. How did you use the engineering design process (EDP) to help with your design?

 Make sure students talk about each practice and discuss how the process helped them complete the challenge.

8. What concerns must be considered in constructing a quality drag device?

 Emphasize safety and meeting the criteria and constraints. Encourage students to utilize proper scientific terminology and the vocabulary embedded in this guide.

9. What specific problems did you have to address in designing the drag device?

 This could include technical problems as well as interpersonal problems. Emphasize how the students worked to find a solution to each problem. Was test data consistent? Have students describe any unusual results and tell what might have happened to cause them.

10. If you were an astronaut heading to Mars, would you trust your team’s drag device to safely land supplies during an extended stay on the planet? Why or why not?

 This question can serve two purposes. One allows students to visualize themselves as astronauts as a way to evaluate their solution in a real-world context. The other allows students to consider various career pathways such as electrical or mechanical engineer, repair technician, or payload scientist.
Creating Solution Presentations

For the final stage of the challenge, students will document their progress in a video or slide presentation to share with other groups who have completed this engineering design challenge. The Student Team Challenge Journal was designed to help document each stage of the engineering design process (EDP). Encourage students to use their journals to help build the presentation.

Submission Guidelines

The finished presentation must meet the following guidelines:

- The introduction must say this: “This is team (team name) and we worked on the (name of challenge). The title of our presentation is (presentation title).”

 Do not identify by name any student, teacher, school, group, city, or region in your presentation. Submissions that do not follow these directions will be disqualified.

- The presentation should document every step students took to complete the challenge, including the Supporting Science Investigations.
- Identify any information provided by NASA subject matter experts (SMEs) that helped you in your design or testing.
- Explain which characteristics of the design provided the most reliable results and why.
- The total length of the presentation should be 3 to 5 minutes.

Once the video or slide document is complete, submit the presentations using the process explained on the Y4Y (You for Youth) website.
Budget Reporting Worksheet

Directions: As a team, complete the cost sheet below. Be sure to include all materials needed, unit cost, quantity, and the item total needed to complete your design. At the end, total up the entire cost of your solution.

<table>
<thead>
<tr>
<th>Line Item Number</th>
<th>Material</th>
<th>Unit Cost</th>
<th>Quantity</th>
<th>Item Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Cost: